Deep Reinforcement Learning Introduction and State-of-the-art

Arjun Chandra Research Scientist Telenor Research / Telenor-NTNU AI Lab arjun.chandra@telenor.com Signologer

24 October 2017

https://join.slack.com/t/deep-rl-tutorial/signup

The Plan

- Some history
- RL and Deep RL in a nutshell
- Deep RL Toolbox
- Challenges and State-of-the-art
 - Data Efficiency
 - Exploration
 - Temporal Abstractions
 - Generalisation

Robot Motor Skill Coordination with EM-based Reinforcement Learning

Petar Kormushev, Sylvain Calinon, and Darwin G. Caldwell

Italian Institute of Technology

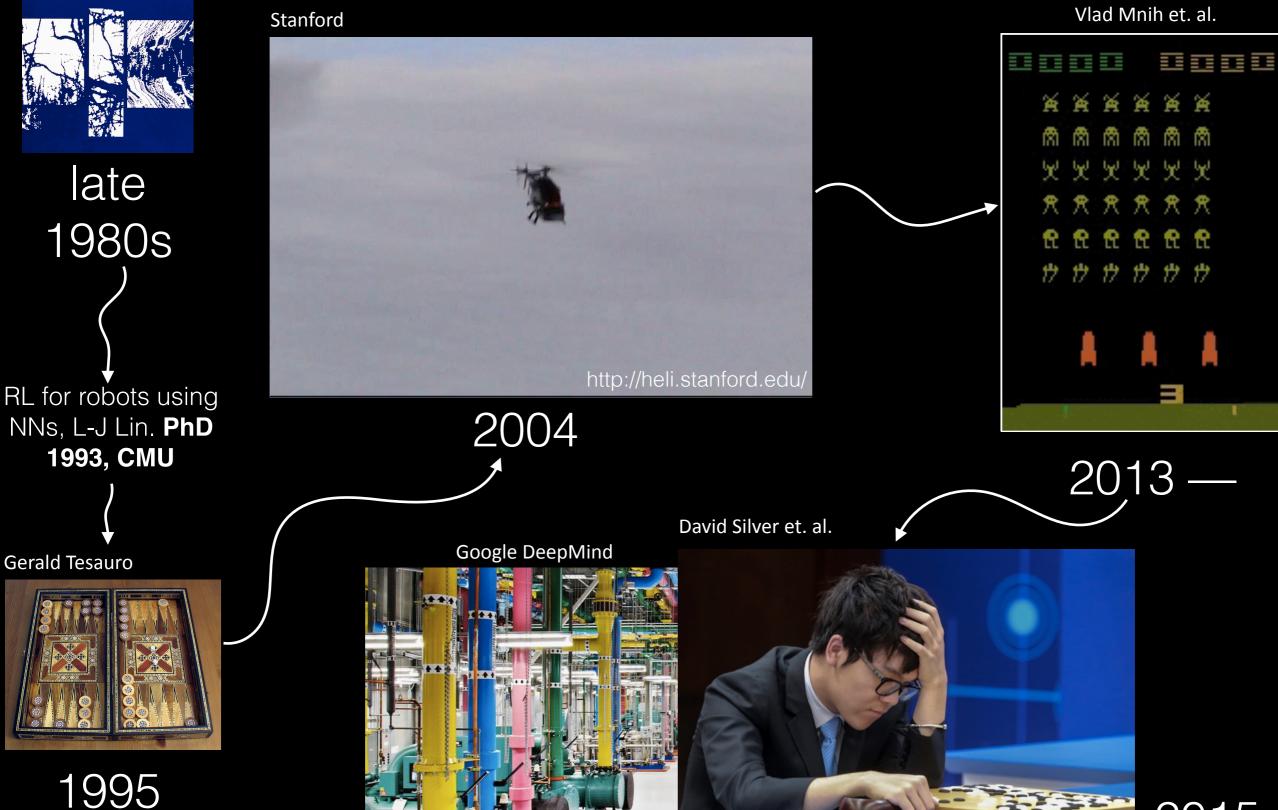
https://vimeo.com/20042665

Rich Sutton et al.

Neural Networks for Control

edited by W. Thomas Miller III, Richard S. Sutton, and Paul J. Werbos

Brief History



2015 —

Problem Characteristics

dynamic

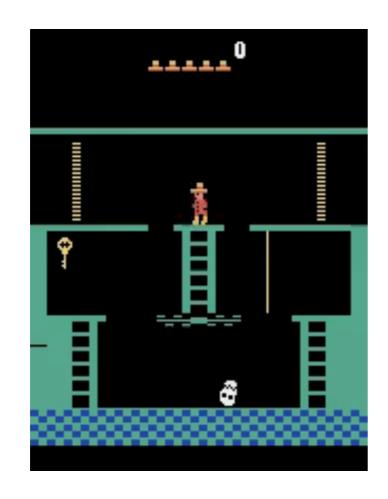
uncertainty/volatility

uncharted/**unimagined**/ exception laden

delayed consequences requires strategy

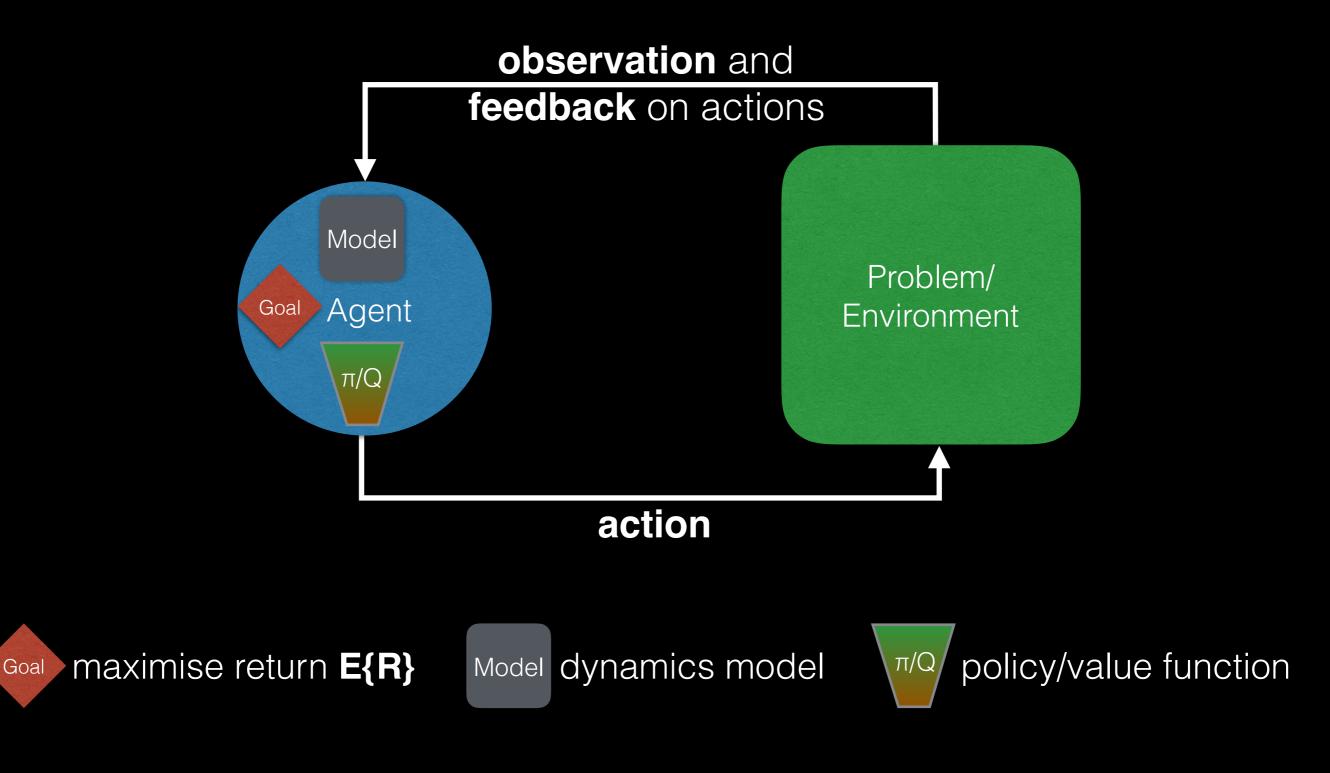
Solution

machine with **agency** which **learn**, **plan**, and **act** to find a strategy for solving the problem

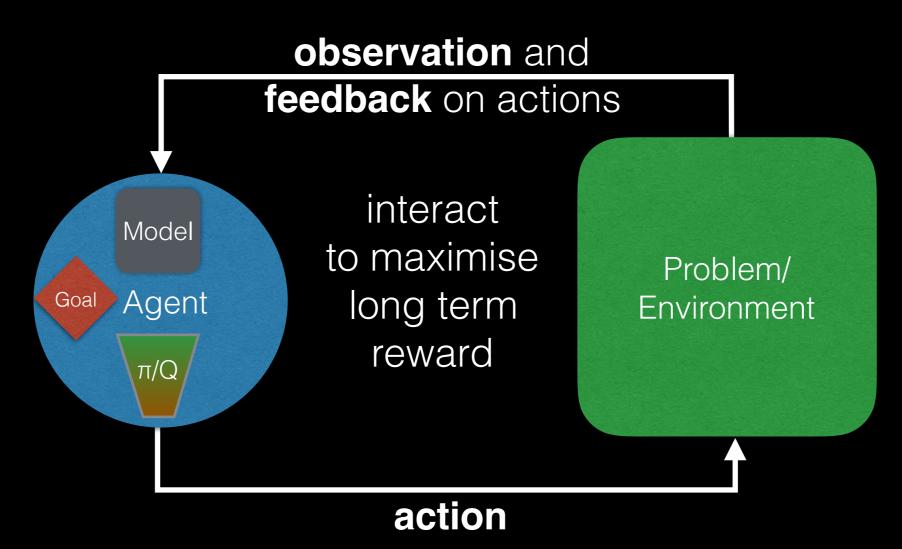


autonomous to some extent
probe and learn from feedback
focus on the long-term objective
explore and exploit

Reinforcement Learning

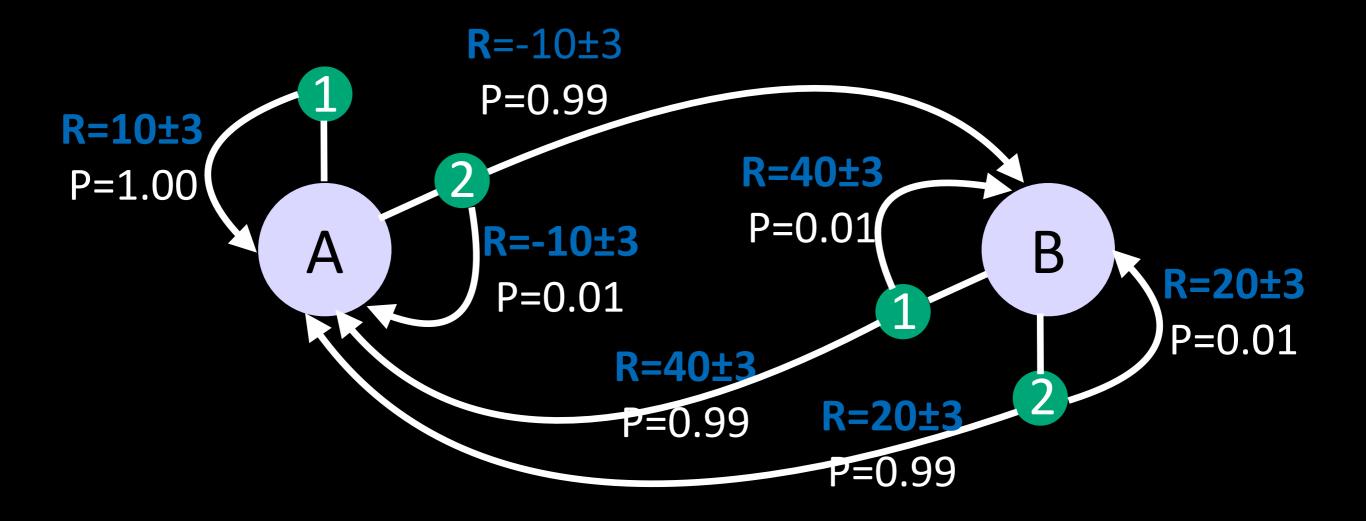


The MDP game!

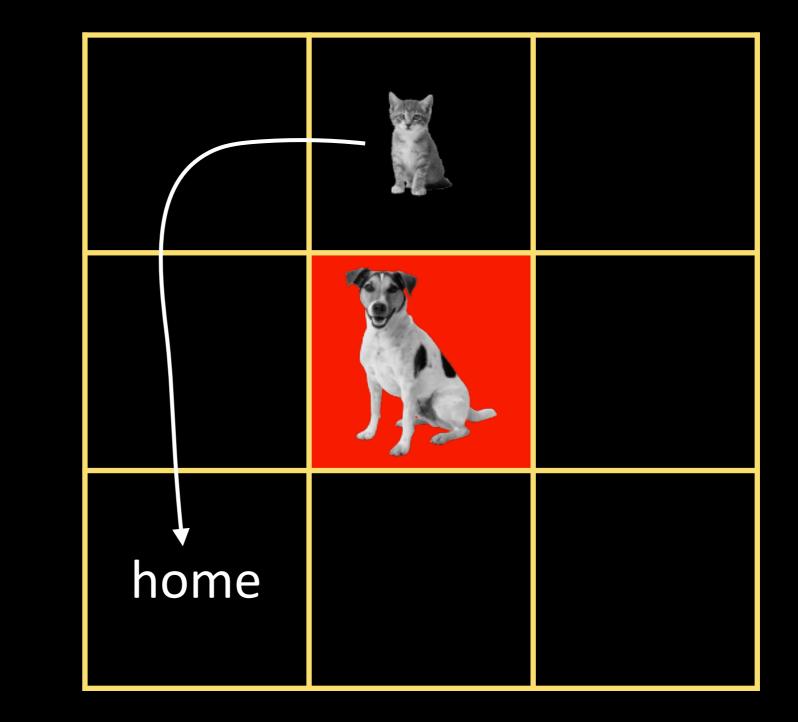


Inspired by Prof. Rich Sutton's tutorial: <u>https://www.youtube.com/watch?v=ggqnxyjaKe4</u>

The MDP (S,A,P,R,Y) R: immediate reward function R(s, a) P: state transition probability P(s'|s, a)



https://github.com/traai/basic-rl

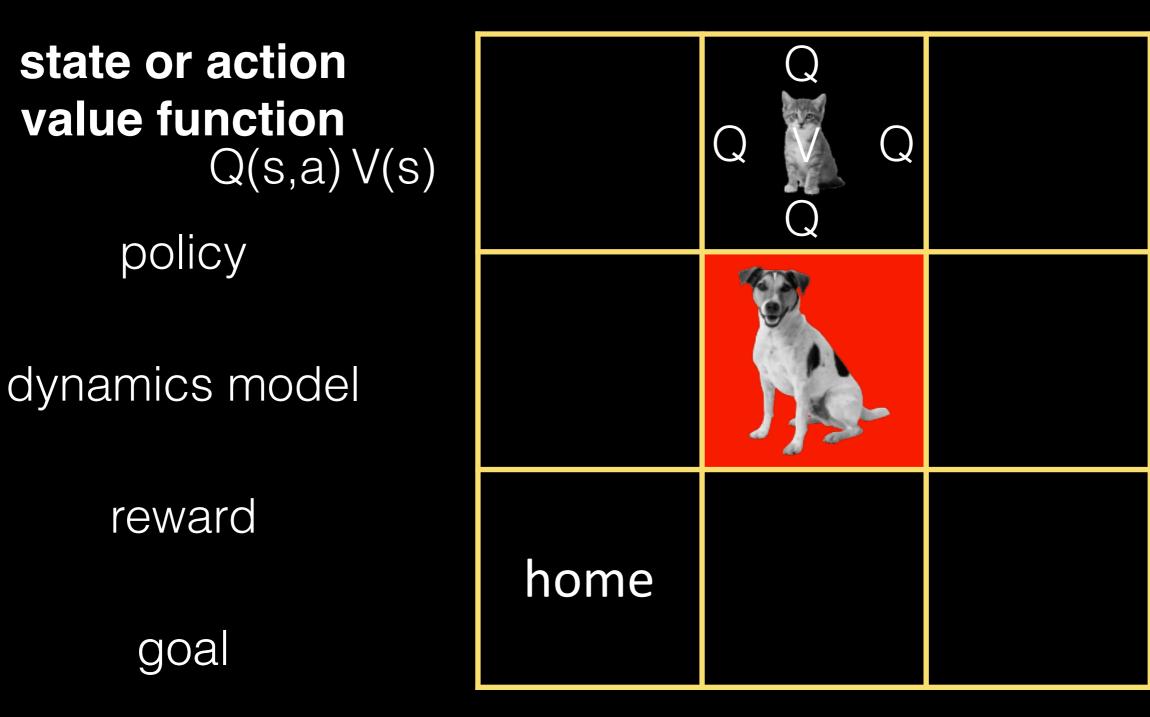


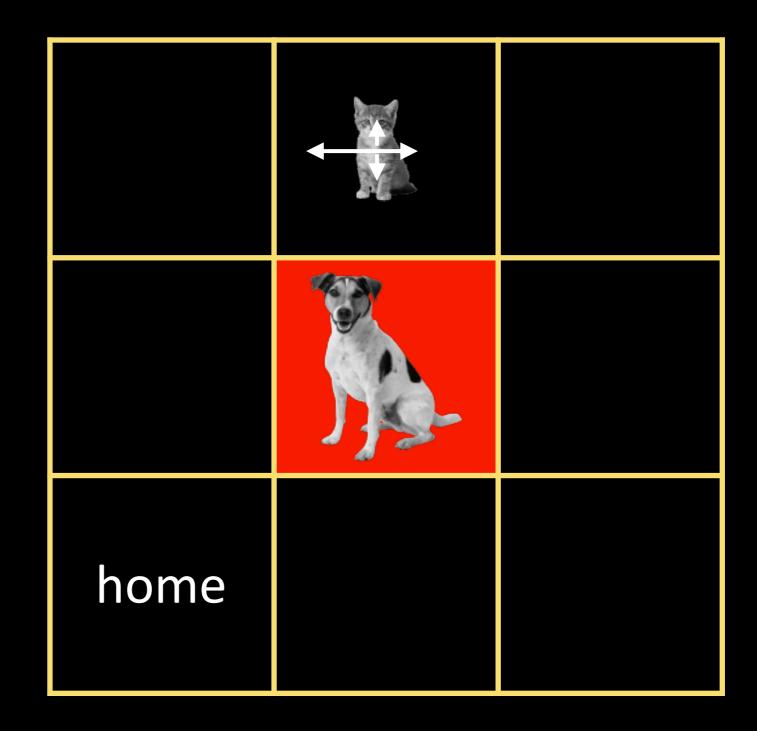
state or action value function

policy

dynamics model

reward





state or action value function

policy $\frac{\pi(s|a)}{\pi(s)}$

dynamics model

reward

If I go South, I will meet

state or action value function

policy

dynamics model

reward

home		

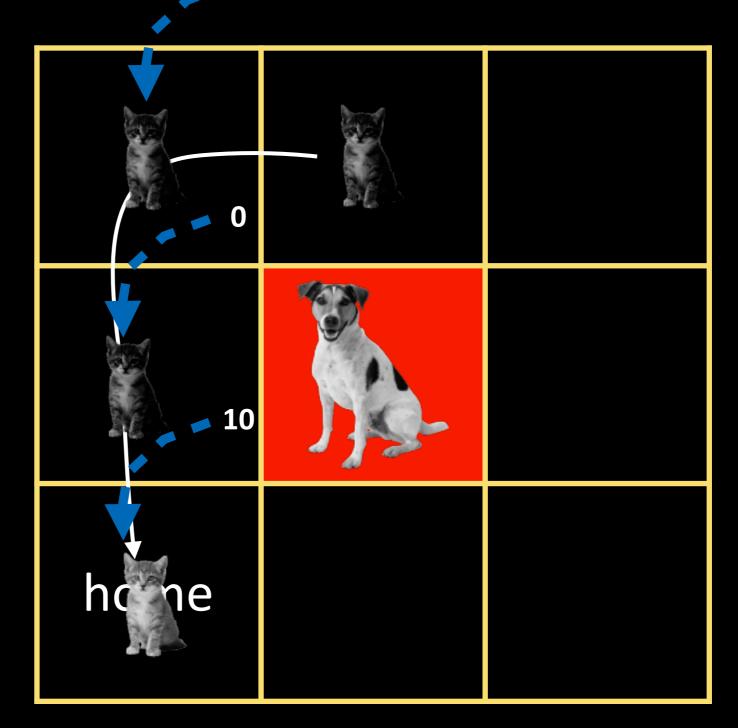
home

state or action value function

policy

dynamics model

reward



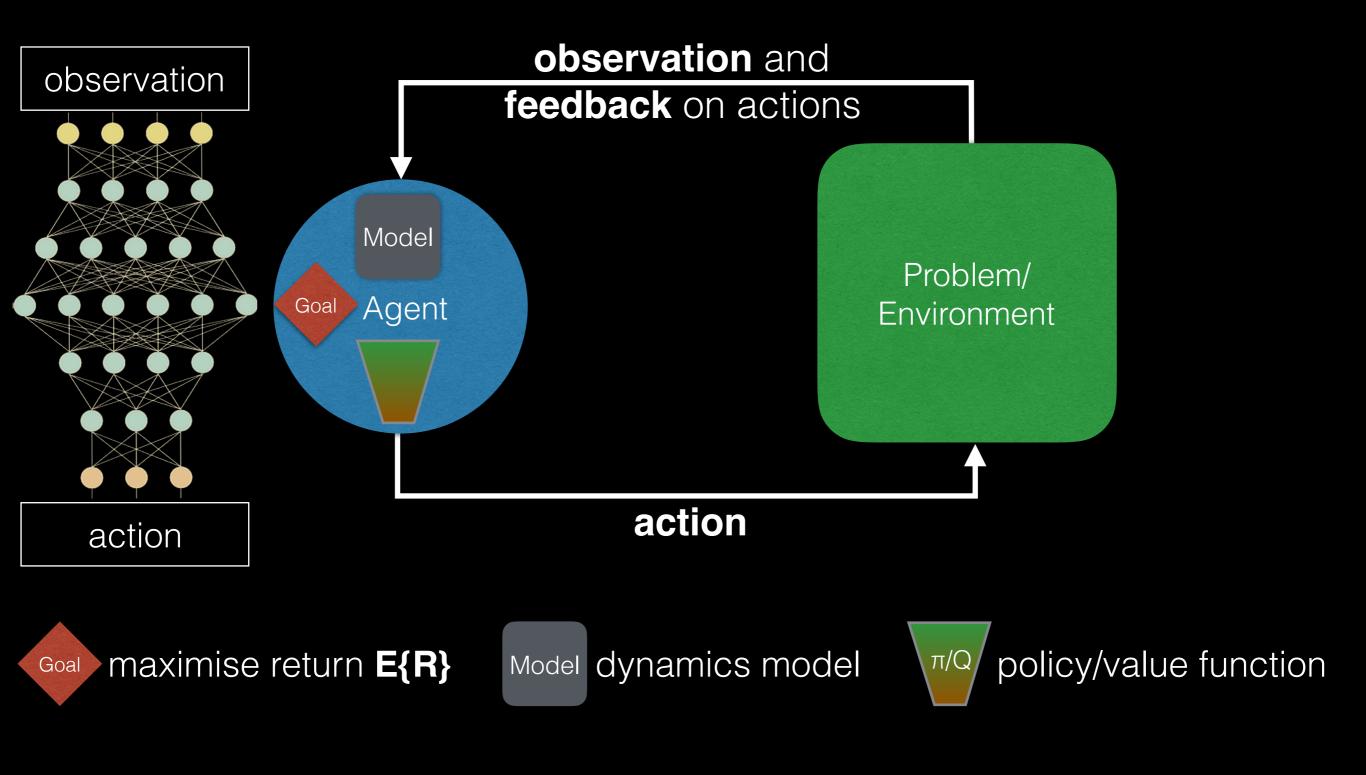
state or action value function

policy

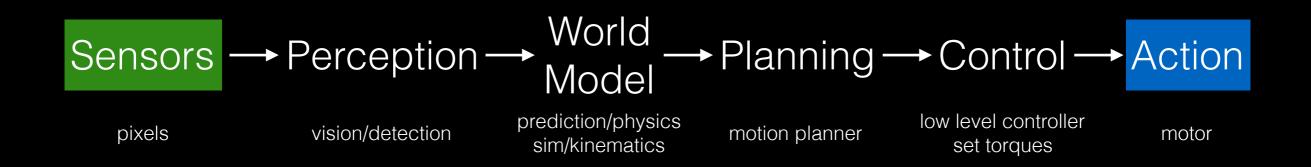
dynamics model

reward

Deep Reinforcement Learning



Deep Reinforcement Learning



abstractions ~ info loss (manual craft)

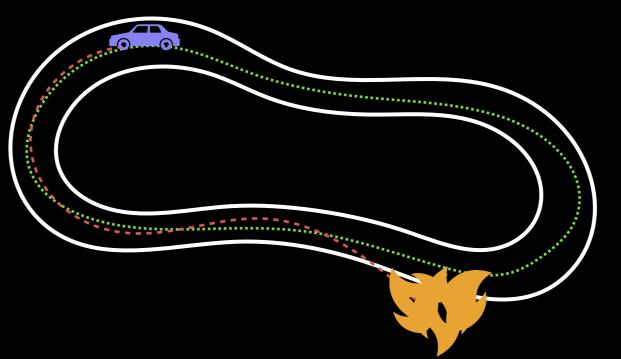
Deep Neural Networks (abstractions/representation adapted to task)

Explaining How a Deep Neural Network Trained with End-to-End Learning Steers a Car, Bojarski et. al., https://arxiv.org/pdf/1704.07911.pdf 2017

SL + RL

https://www.youtube.com/watch?v=NJU9ULQUwng

https://www.youtube.com/watch?v=KnPiP9PkLAs

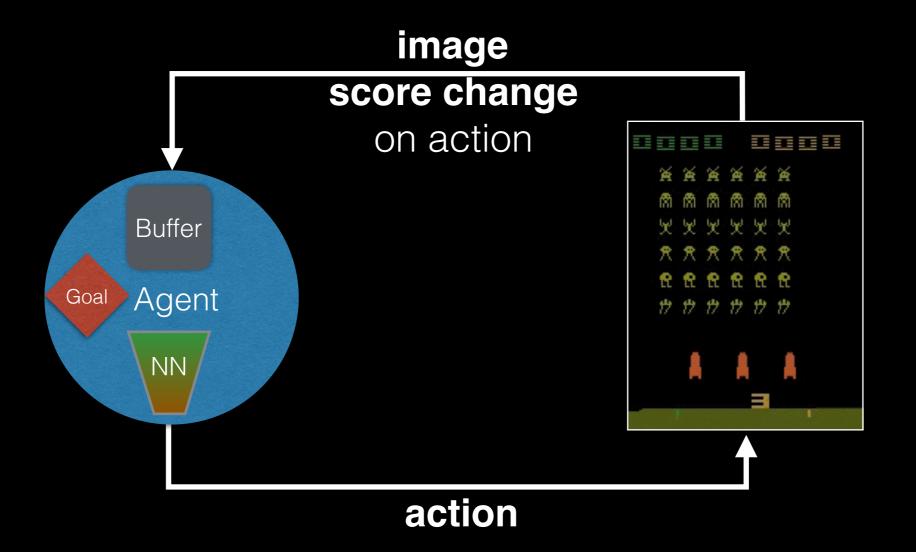


data mismatch

Toolbox

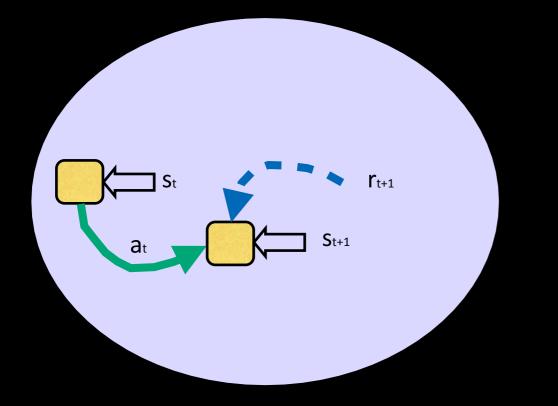
Standard algorithms to give you a flavour of the norm!

DQN

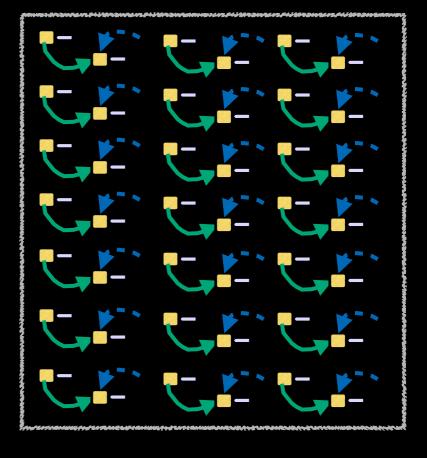


Human-level control through deep reinforcement learning, Mnih et. al., Nature 518, Feb 2015

experience replay buffer

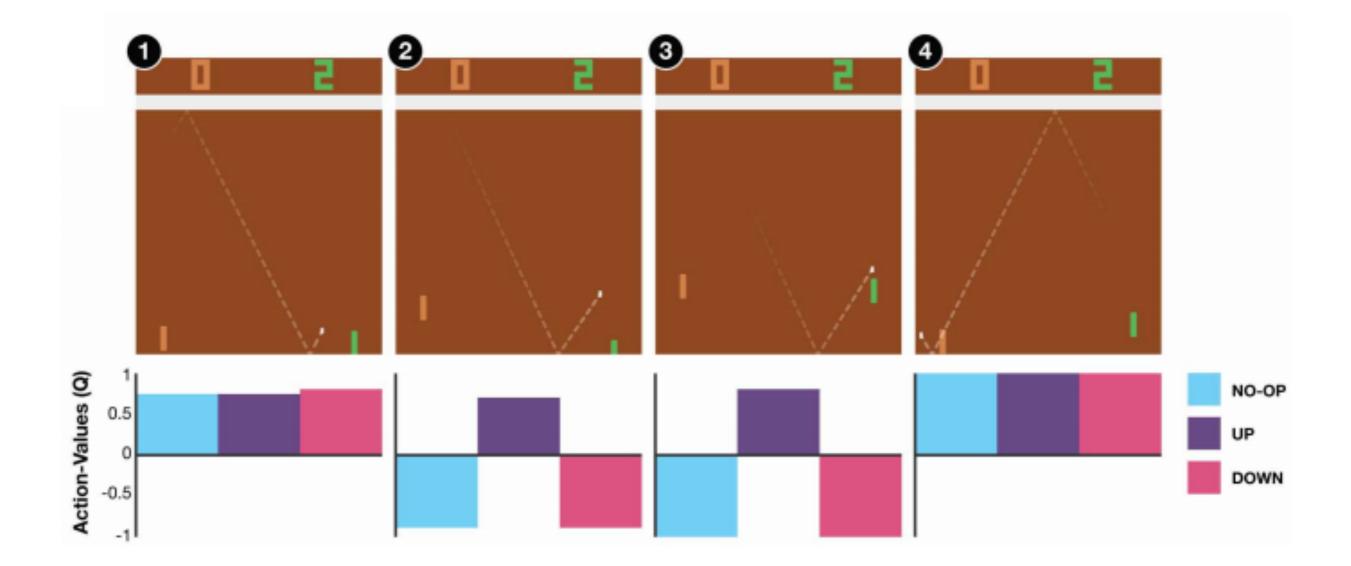


save transition in memory



randomly **sample** from memory for training = i.i.d

freeze target freeze $r + \gamma \max_{a'} Q(s', a', \mathbf{w}^-) - Q(s, a, \mathbf{w})$



https://storage.googleapis.com/deepmind-media/dqn/ DQNNaturePaper.pdf

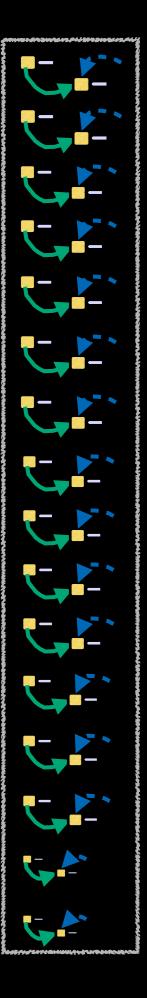
Human-level control through deep reinforcement learning, Mnih et. al., Nature 518, Feb 2015

prioritised experience replay

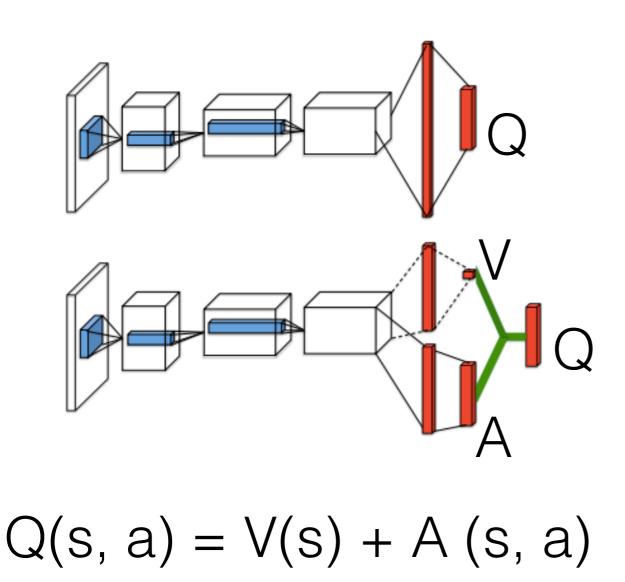
sample from memory based on surprise

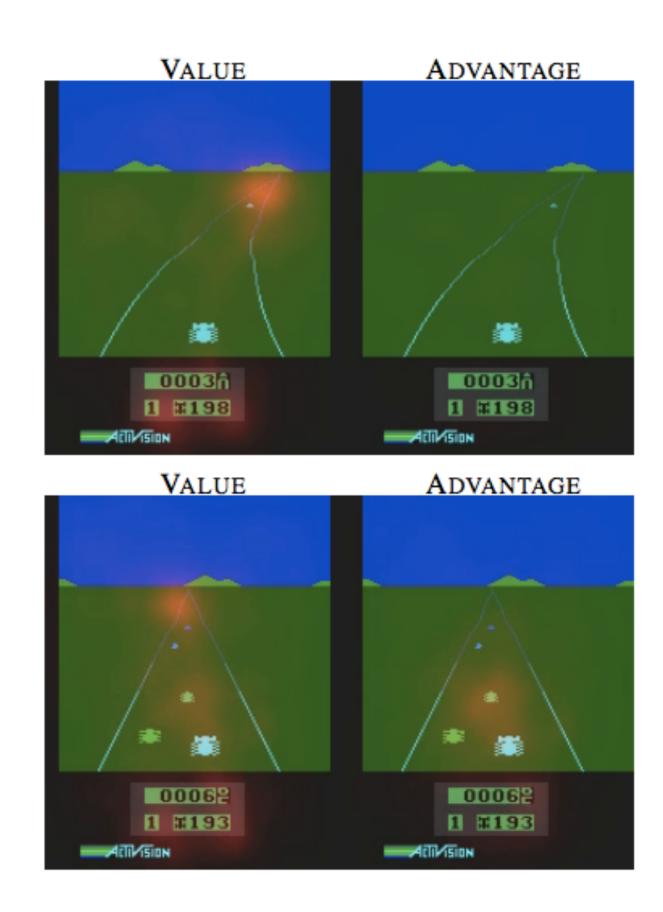
$$|r + \gamma \max_{a'} Q(s', a', \mathbf{w}^-) - Q(s, a, \mathbf{w})|$$

Prioritised Experience Replay, Schaul et. al., ICLR 2016



dueling architecture





Dueling Network Architectures for Deep RL Wang et. al., ICML 2016

however training is

Parallel Asynchronous Training value and policy based methods

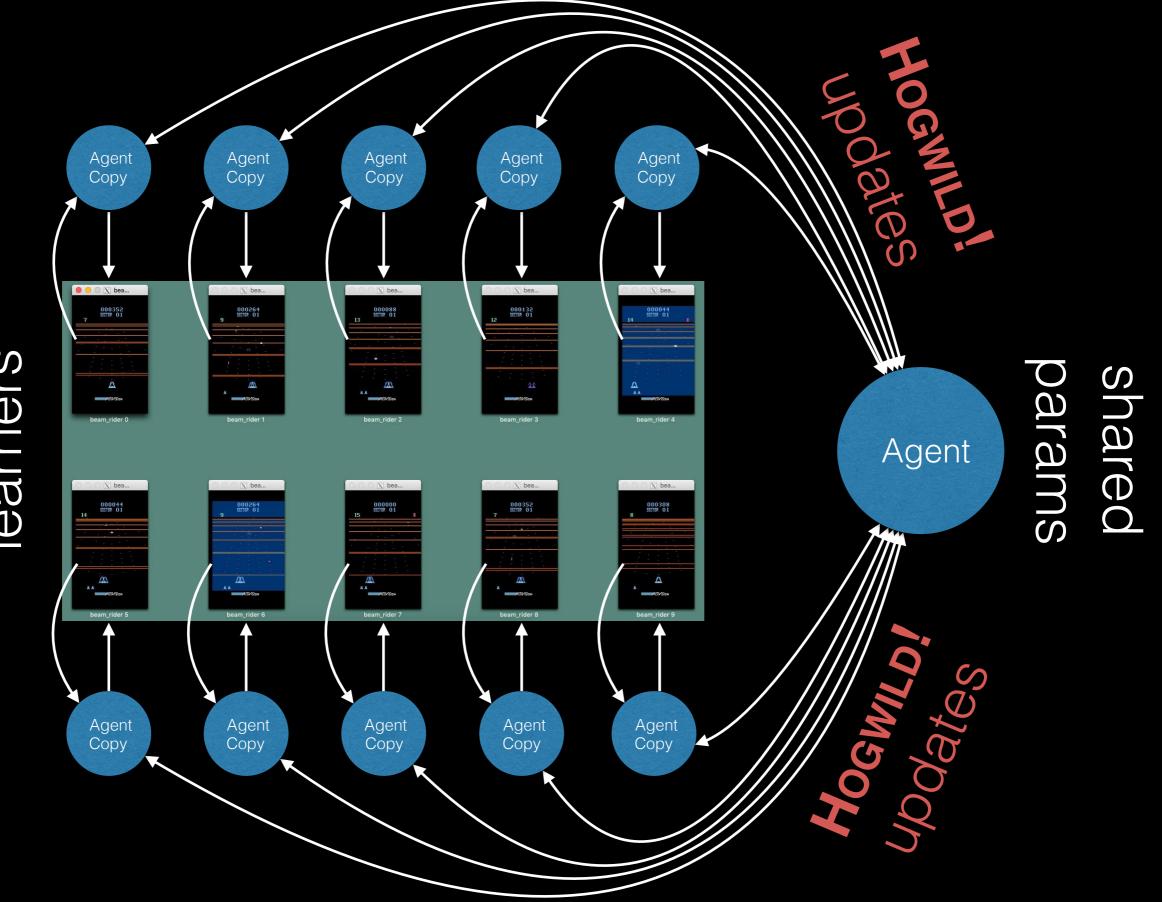
https://youtu.be/0xo1Ldx3L5Q

https://youtu.be/Ajjc08-iPx8

https://youtu.be/nMR5mjCFZCw

parallel agents shared parameters lock-free updates

Asynchronous Methods for Deep Reinforcement Learning, Mnih et. al., ICML 2016



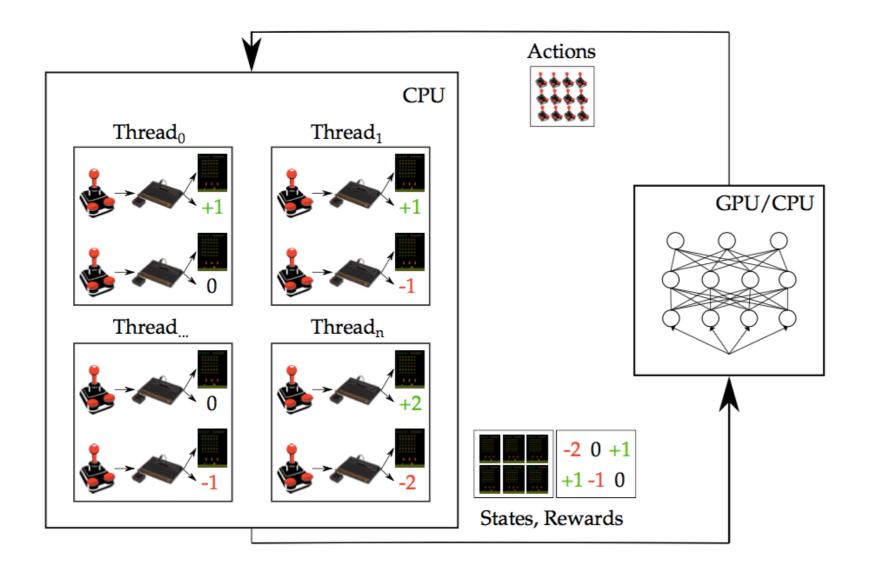
https://github.com/traai/async-deep-rl

parallel learners

So 2016...

Can we train even faster?

(Parallel Advantage Actor-Critic)



1 GPU/CPU Reduced

artificial intelliaence

telenor ©NTNU

lab

training time

SOTA performance

Alfredo Clemente

https://github.com/alfredvc/paac

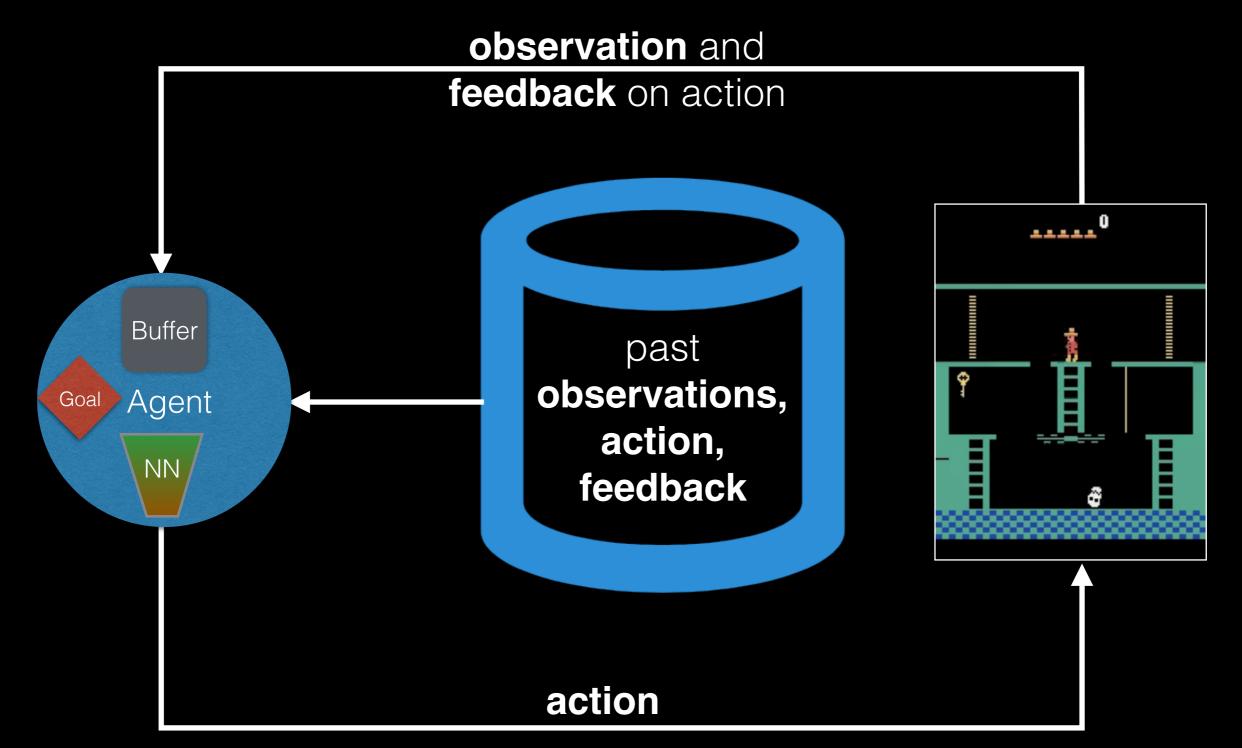
Efficient Parallel Methods for Deep Reinforcement Learning, A. V. Clemente, H. N. Castejón, and A. Chandra, RLDM 2017

Challenges and SOTA

Data Efficiency Exploration Temporal Abstractions Generalisation

Data Efficiency

Demonstrations



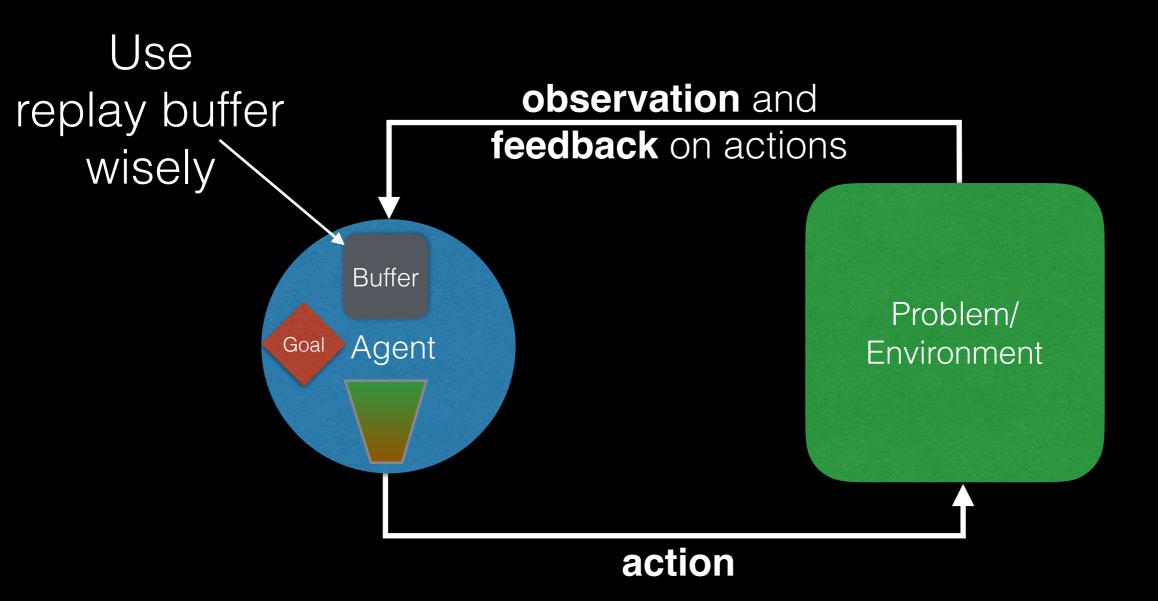
Learning from Demonstrations for Real World Reinforcement Learning, Hester et. al., arXiv e-print, Jul 2017

https://www.youtube.com/watch?v=JR6wmLaYuu4

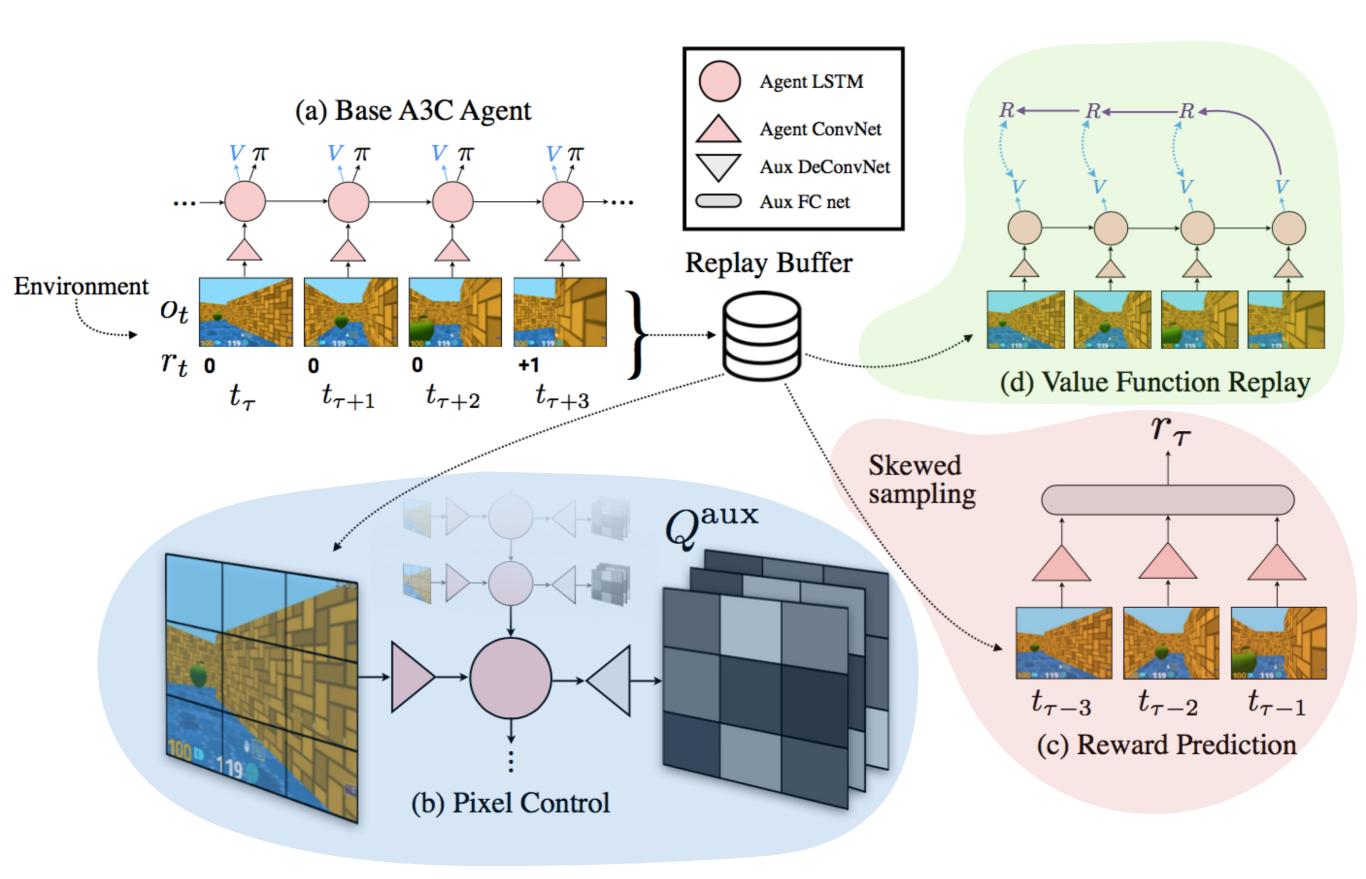
https://www.youtube.com/watch?v=1wsCZk0Im54

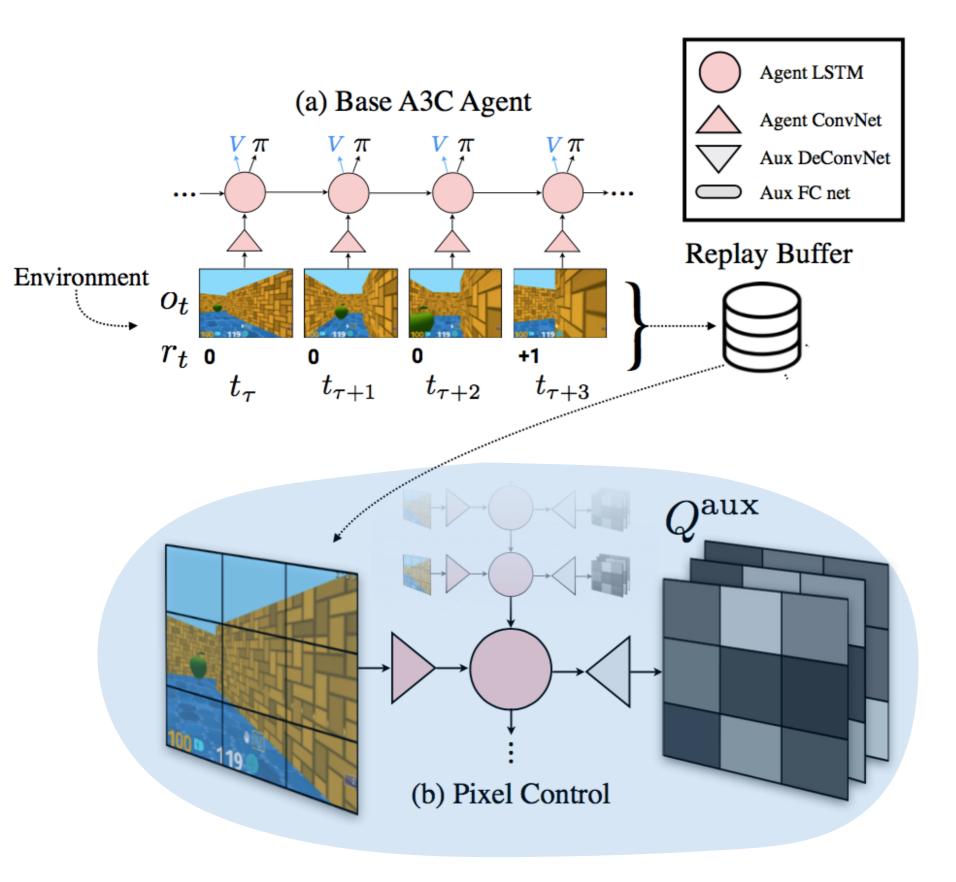
https://www.youtube.com/watch?v=B3pf7NJFtHE

Deep RL with Unsupervised Auxiliary Tasks



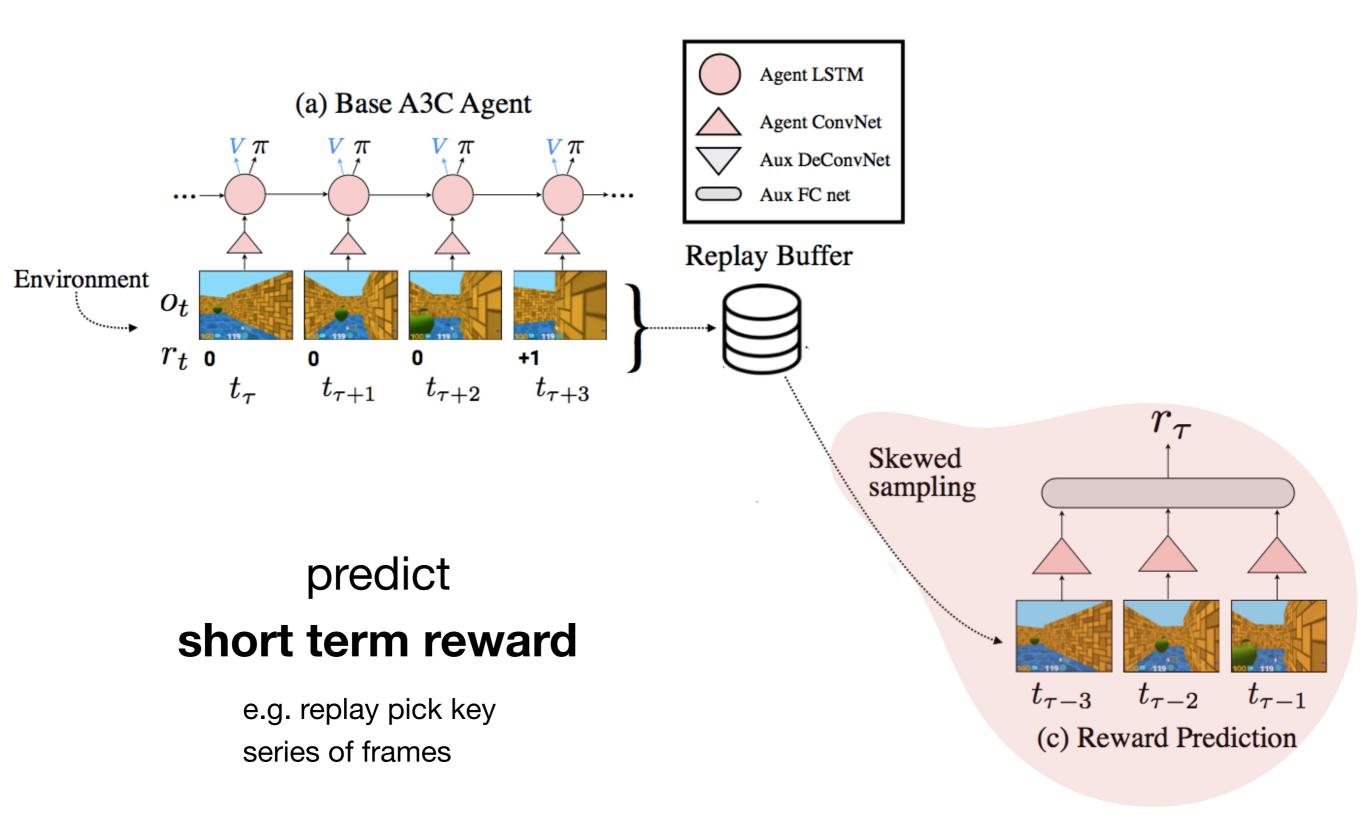
Reinforcement Learning with Unsupervised Auxiliary Tasks, Jaderberg et. al. ICML 2017

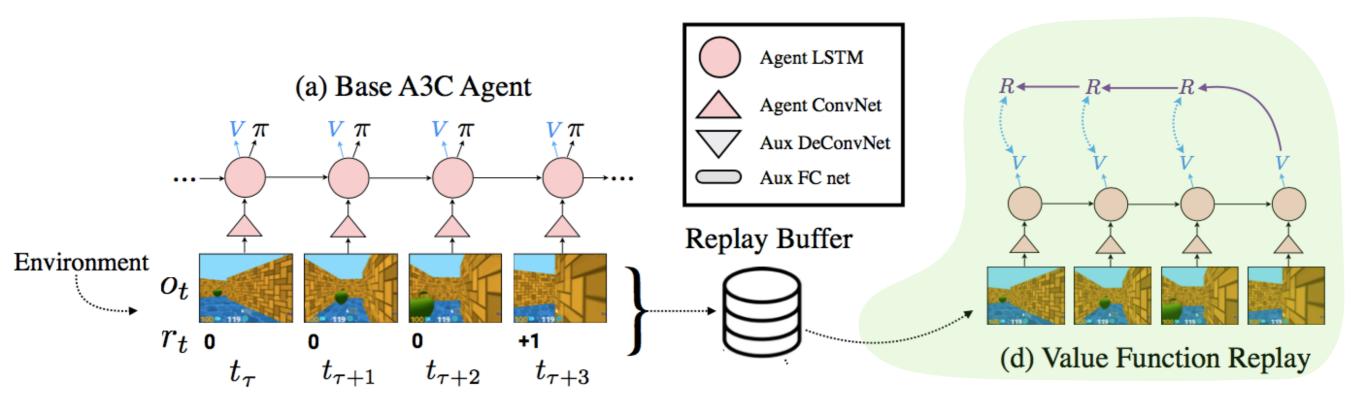




learn to act to affect pixels

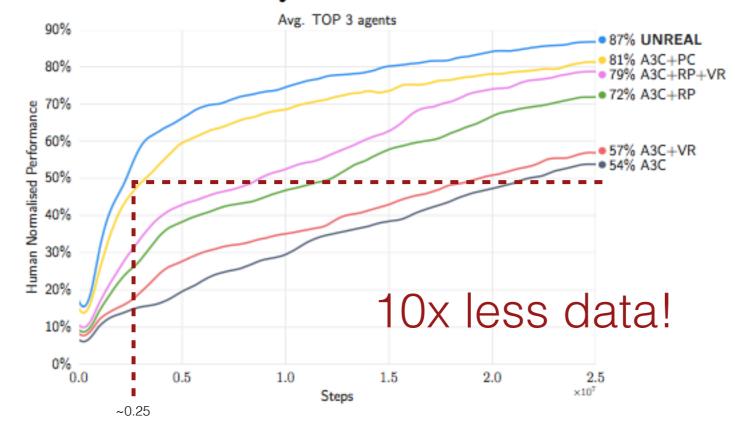
e.g. if grabbing fruit makes it disappear, agent would do it



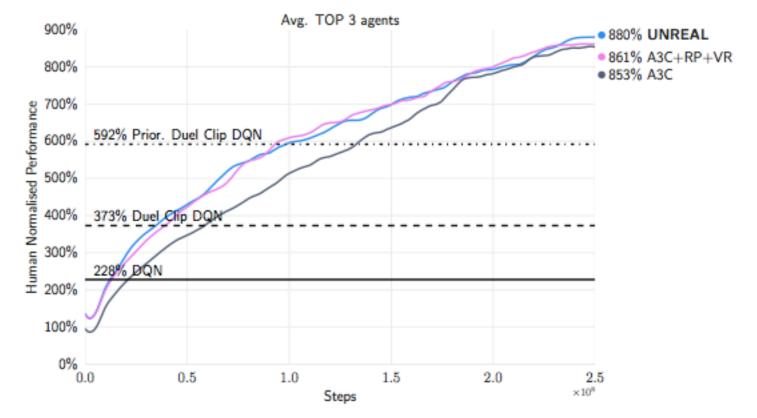


predict long term reward

Labyrinth Performance



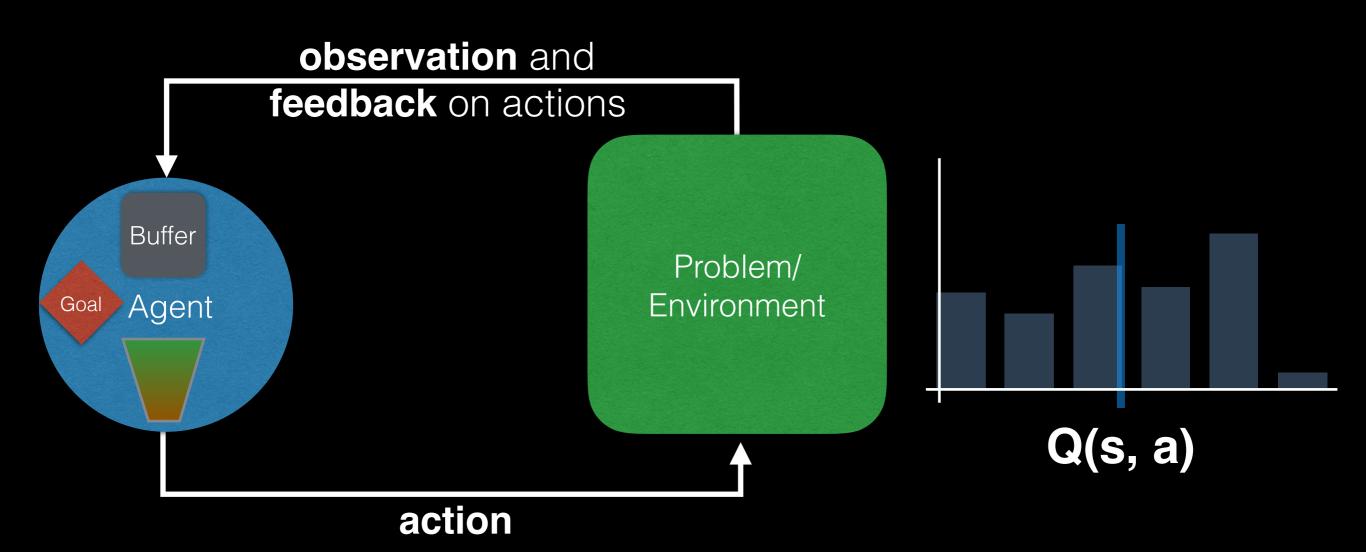
Atari Performance



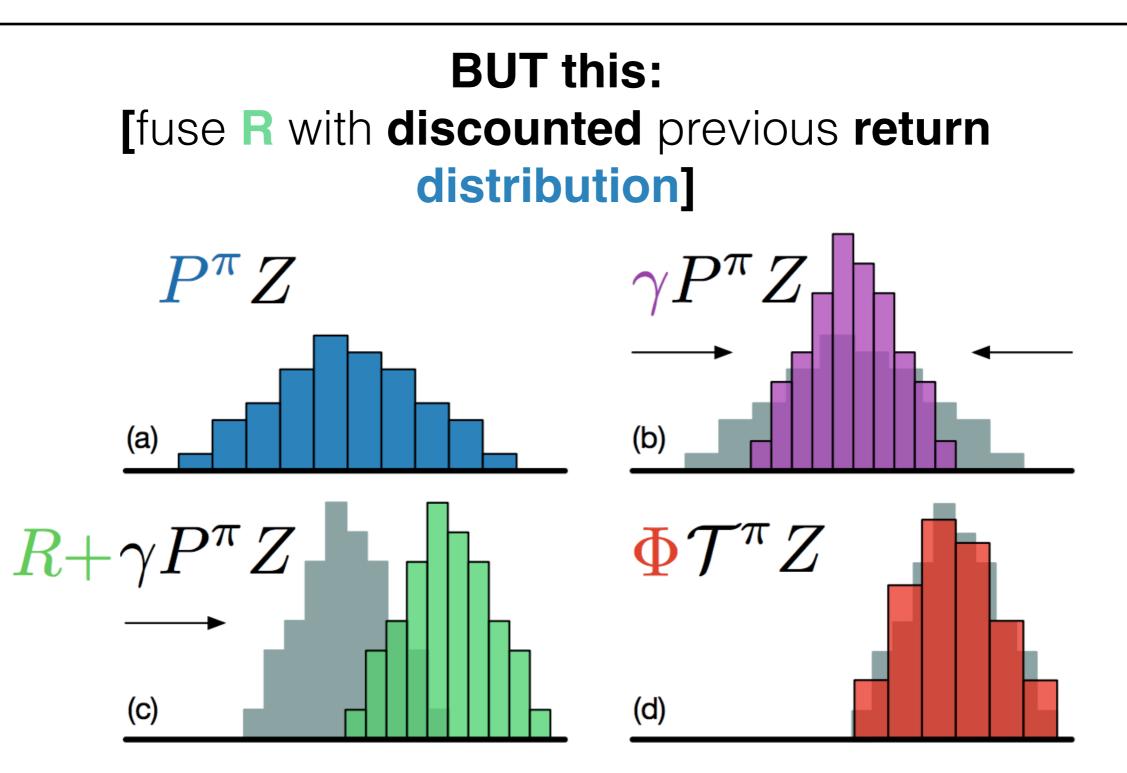
Reinforcement Learning with Unsupervised Auxiliary Tasks, Jaderberg et. al. ICML 2017

https://deepmind.com/blog/reinforcement-learningunsupervised-auxiliary-tasks/

Distributional RL



Normal DQN **target**: [sample **reward** after step + **discounted** previous **return** estimate from then on]



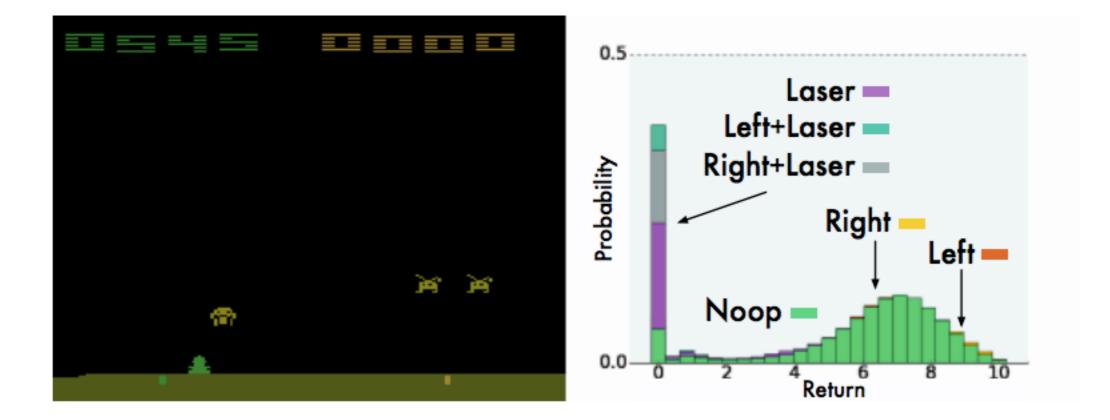
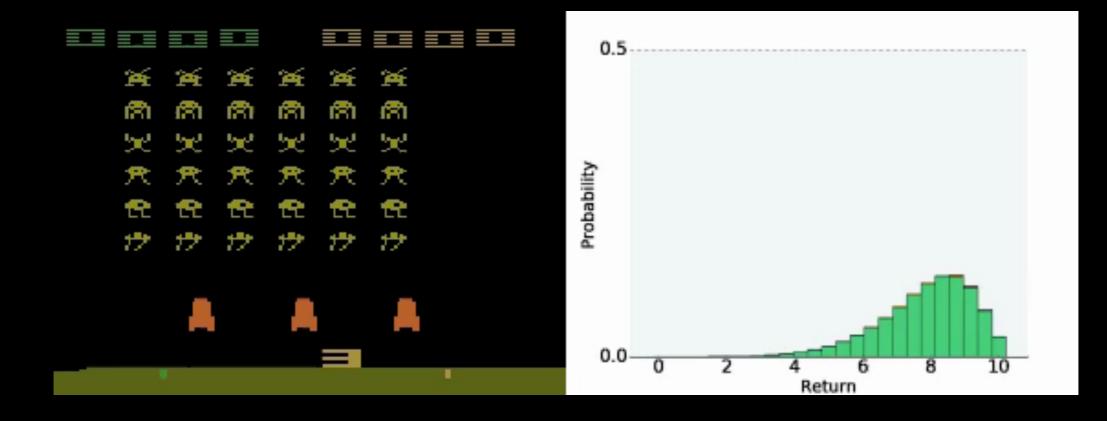
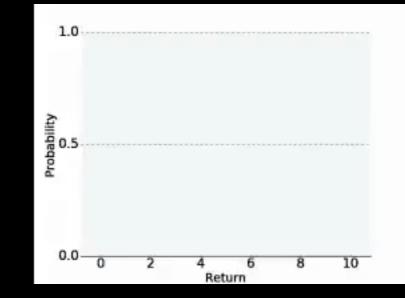


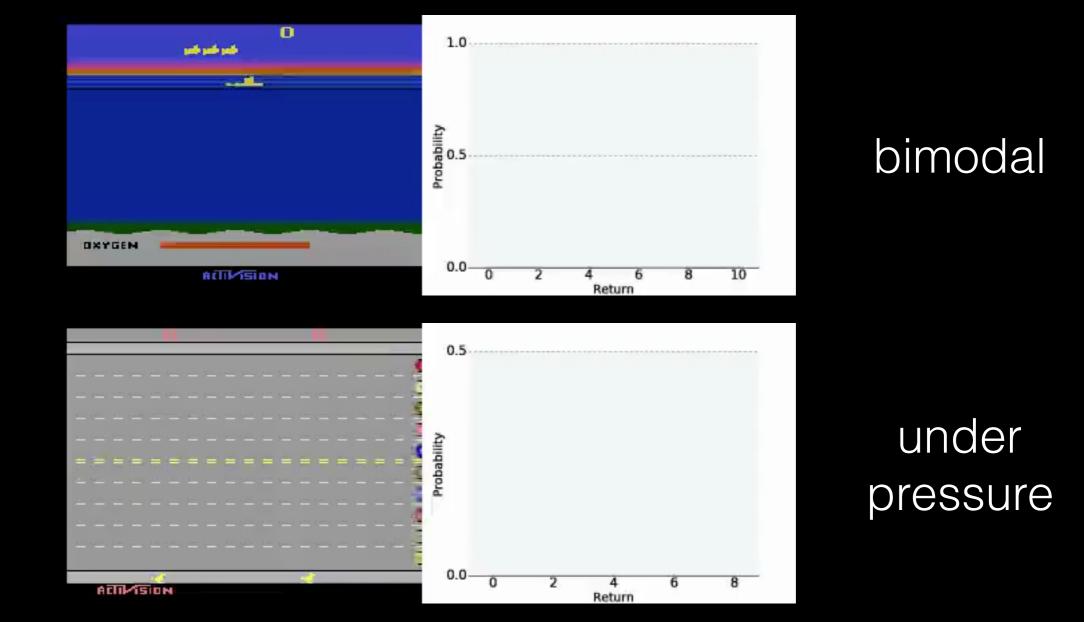
Figure 4. Learned value distribution during an episode of SPACE INVADERS. Different actions are shaded different colours. Returns below 0 (which do not occur in SPACE INVADERS) are not shown here as the agent assigns virtually no probability to them.

"If I shoot now, it is game over for me"



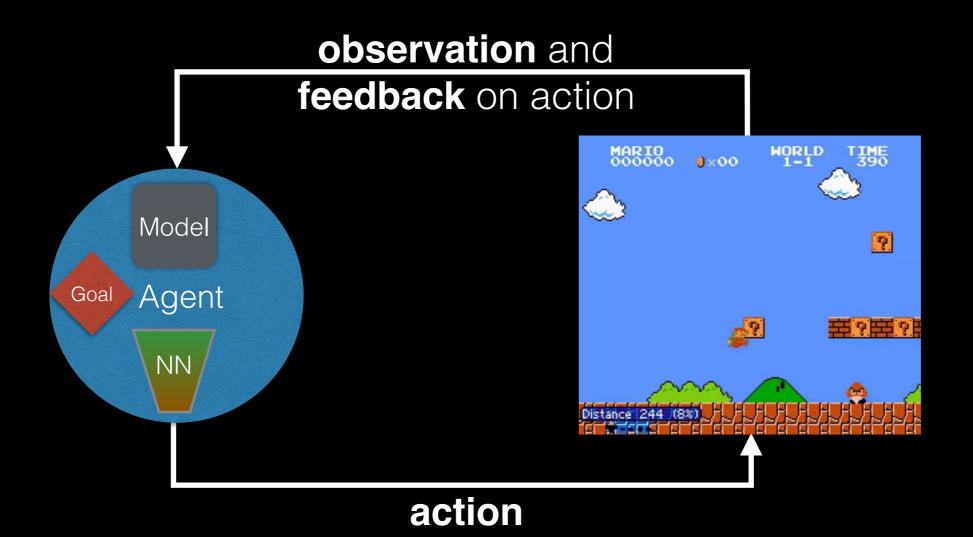


wrong/fatal actions

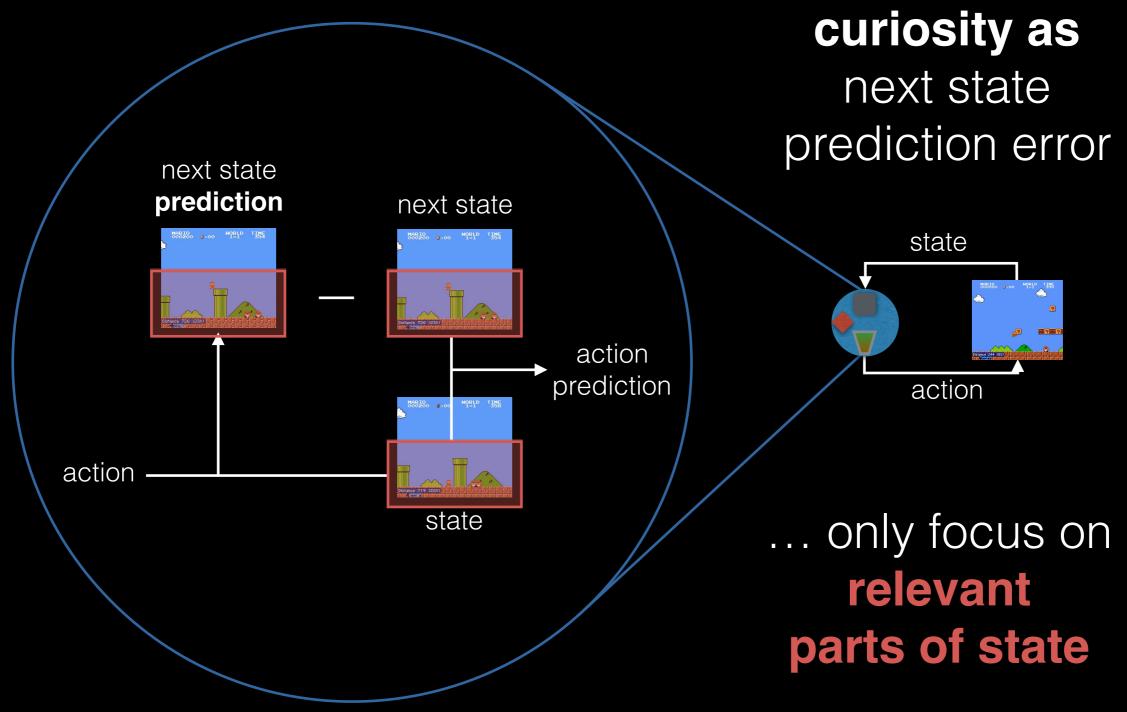


Exploration

Curiosity Driven Exploration



Curiosity Driven Exploration



Curiosity-driven Exploration by Self-supervised Prediction, Pathak, Agrawal et al., ICML 2017.

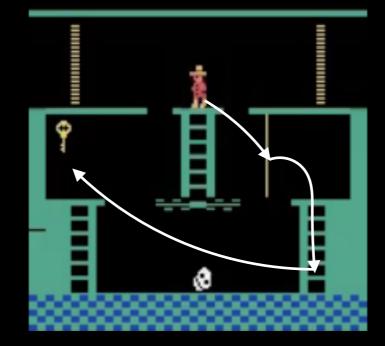
Curiosity Driven Exploration by Self-Supervised Prediction

ICML 2017

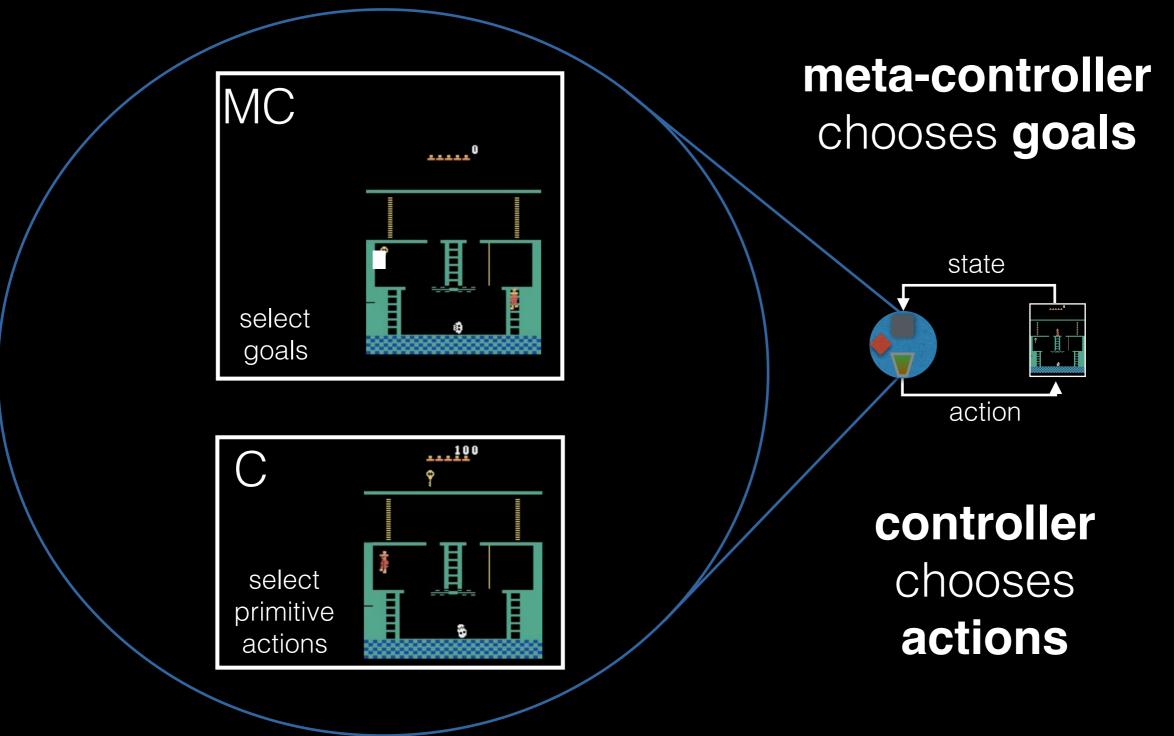
Deepak Pathak, Pulkit Agrawal, Alexei Efros, Trevor Darrell UC Berkeley

> https://github.com/pathak22/noreward-rl https://pathak22.github.io/noreward-rl/

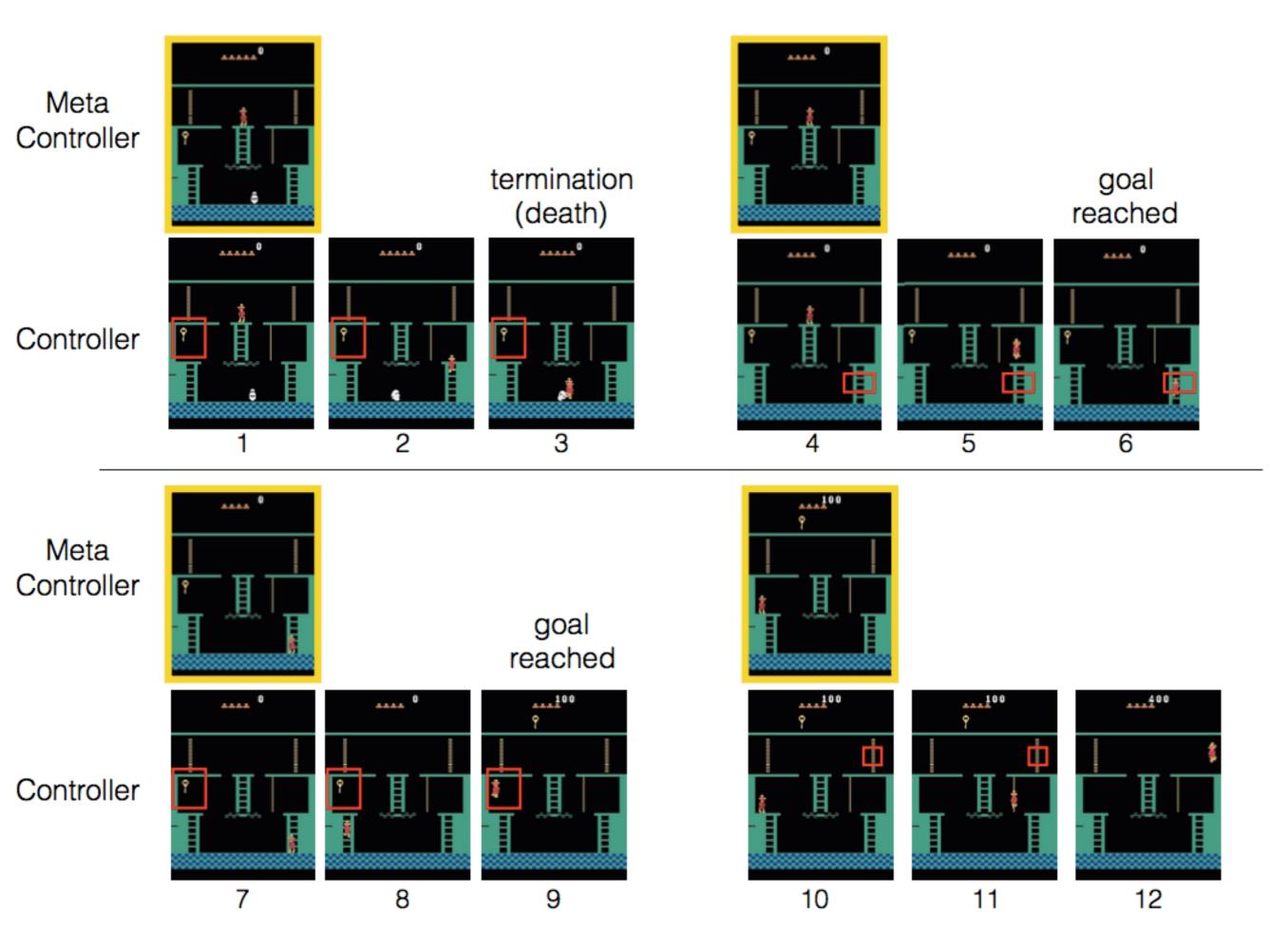
Temporal Abstractions



HRL with pre-set Goals



Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, T. D. Kulkarni, K. R. Narasimhan et. al. NIPS 2016

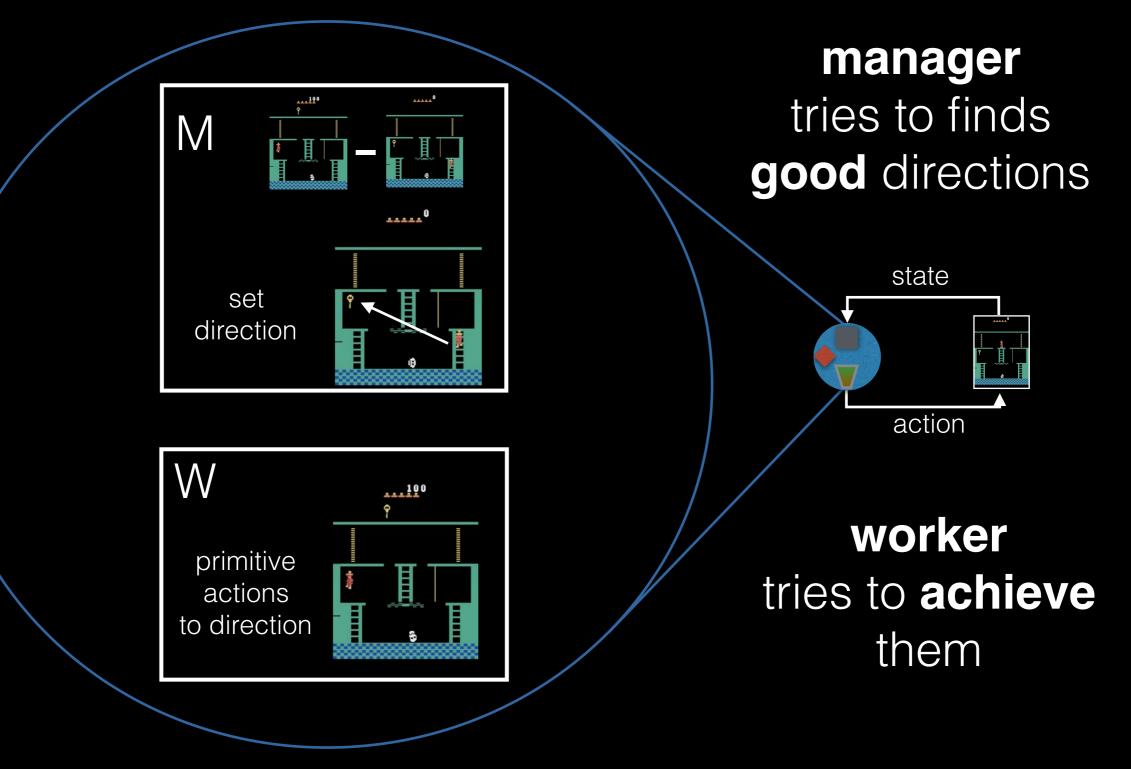


Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, T. D. Kulkarni, K. R. Narasimhan et. al. NIPS 2016

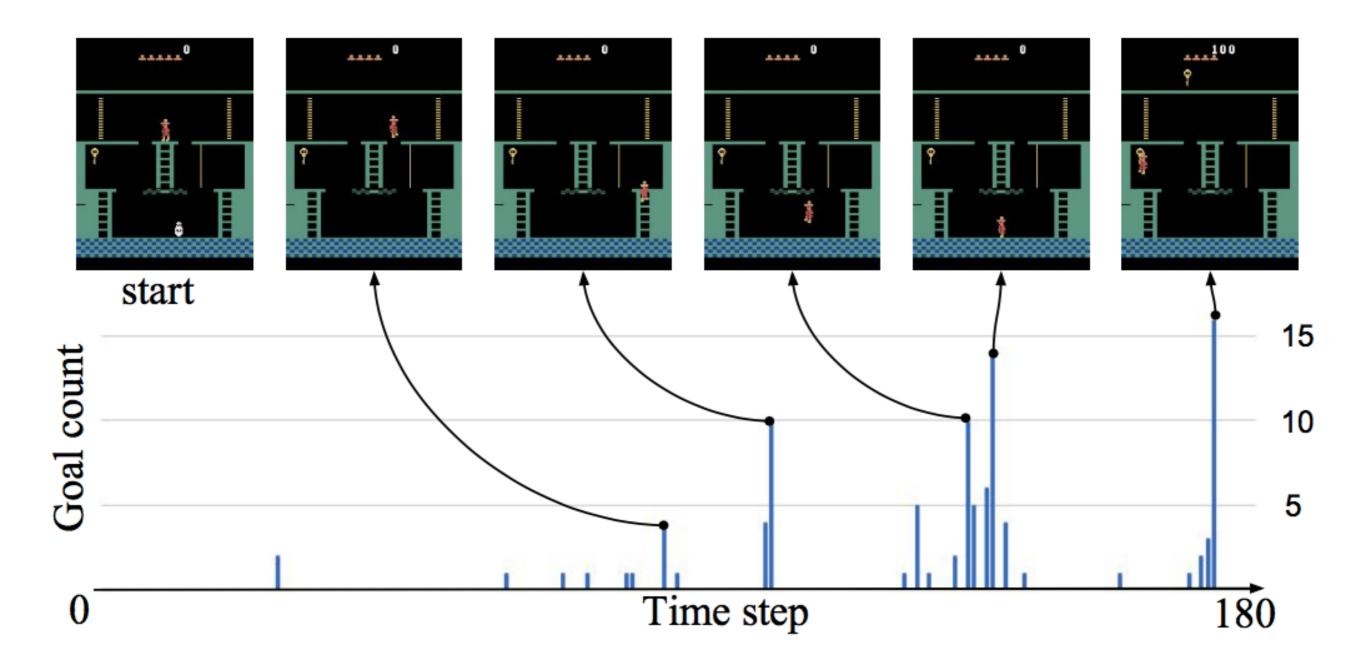
pre-defined goal selected by meta-controller

Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, T. D. Kulkarni, K. R. Narasimhan et. al. NIPS 2016

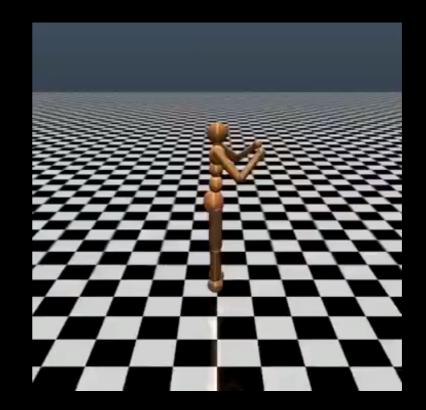
FeUdal Networks for HRL



FeUdal Networks for Hierarchical Reinforcement Learning, Vezhnevets et. al. ICML 2017



Generalisation



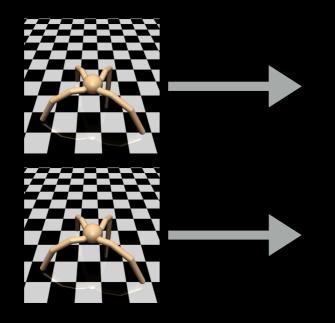
Meta-learning (Learn to Learn) Versatile agents!

Transfer

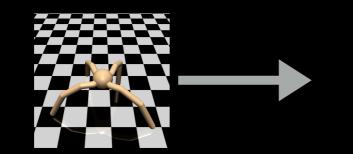
learning works with images

Good features for decision making?

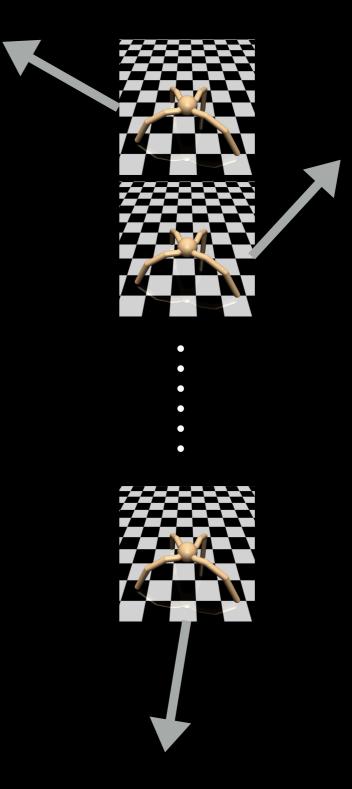
http://www.derinogrenme.com/2015/07/29/makale-imagenet-large-scale-visualrecognition-challenge/



- •
- •
- •
- •

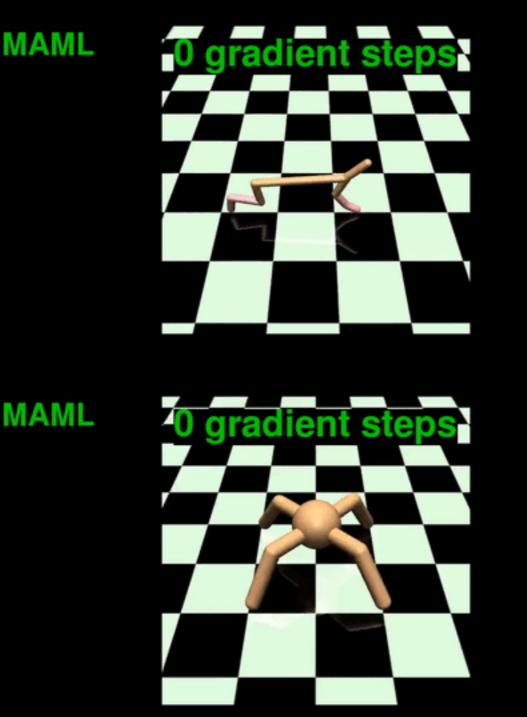


learn to reduce learning time to go to X



Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks.

C. Finn, P. Abbeel, S. Levine. ICML 2017.



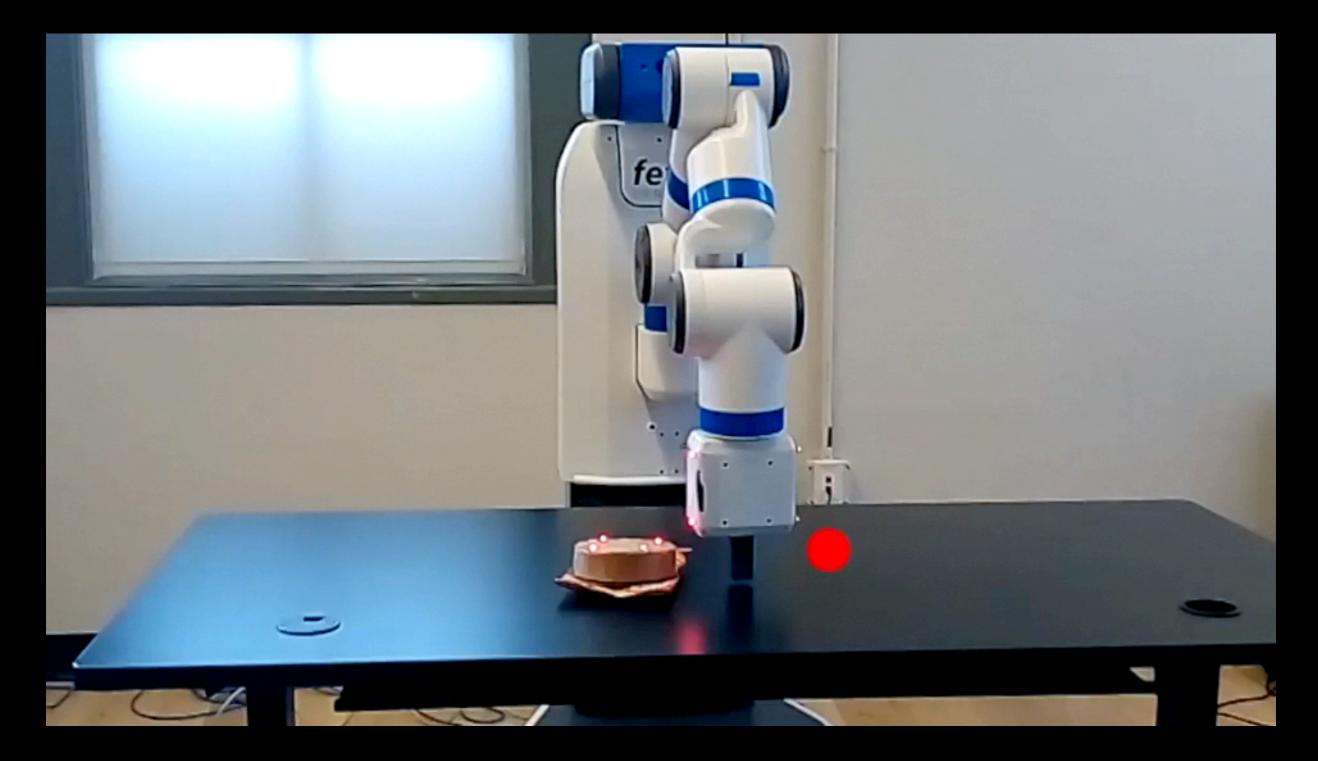
0 grad/opt step: policy ready to learn

1 grad/opt step: learnt to achieve goal

http://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/ Code: https://github.com/cbfinn/maml_rl Videos: https://sites.google.com/view/maml

Domain Randomisation

Generalising from Simulation Sim-to-Real Transfer of Robotic Control with Dynamics Randomization, Peng et al. arXiv preprint, 18 Oct 2017

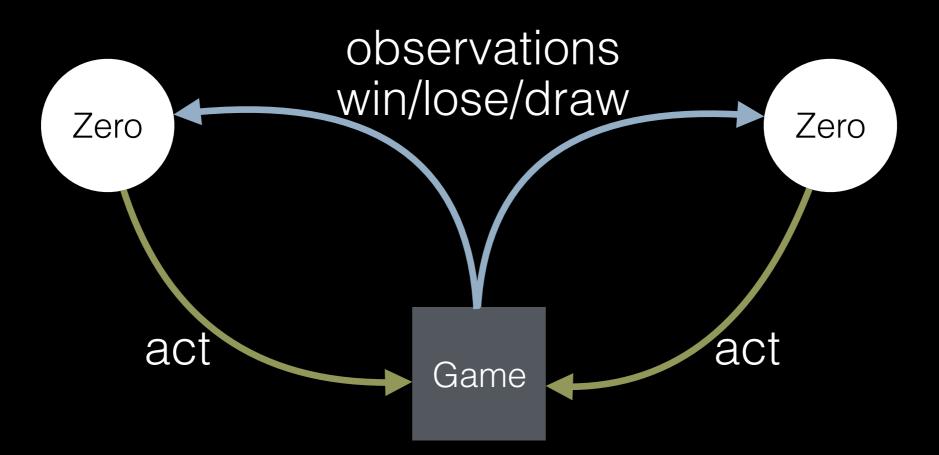


https://blog.openai.com/generalizing-from-simulation/

Generalisation via Self-play

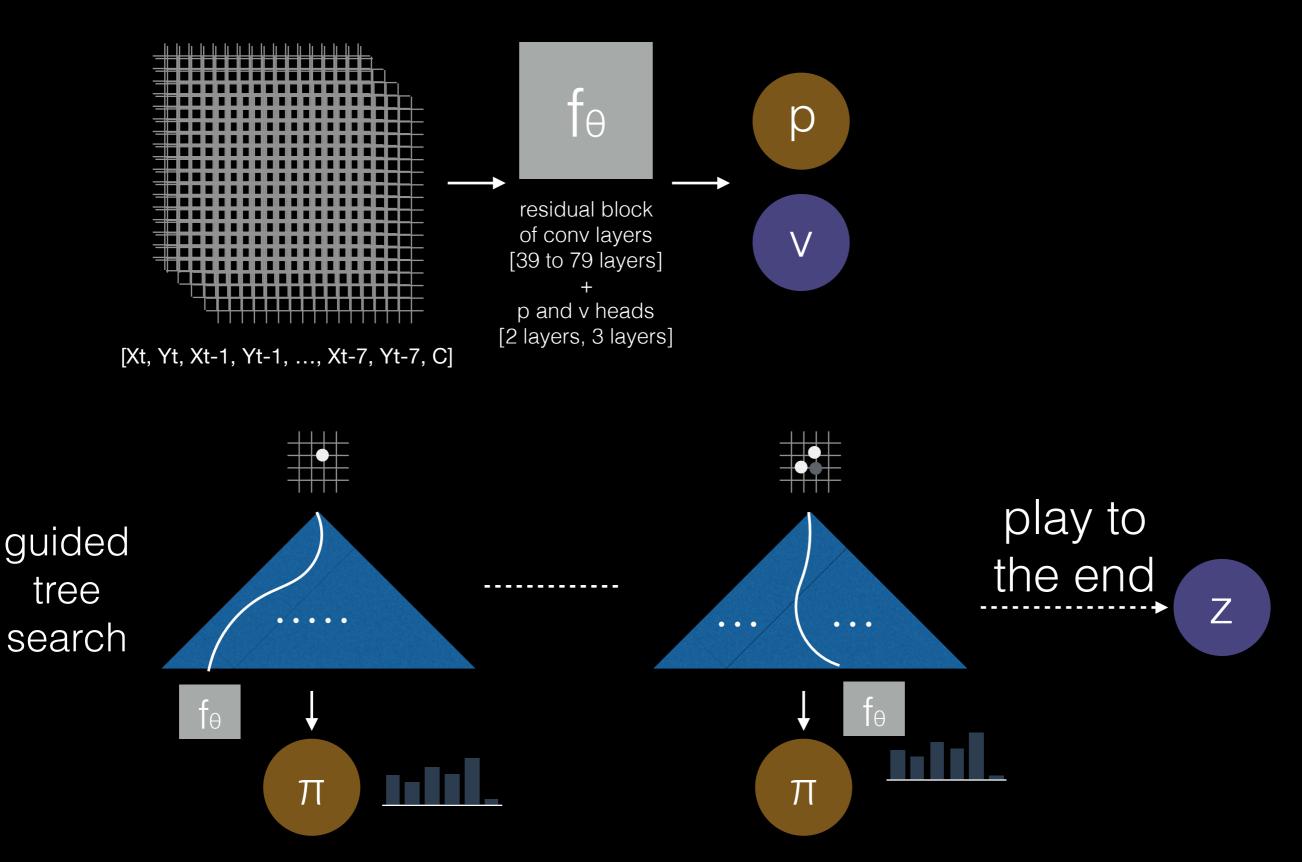
Deep RL in AlphaGo Zero

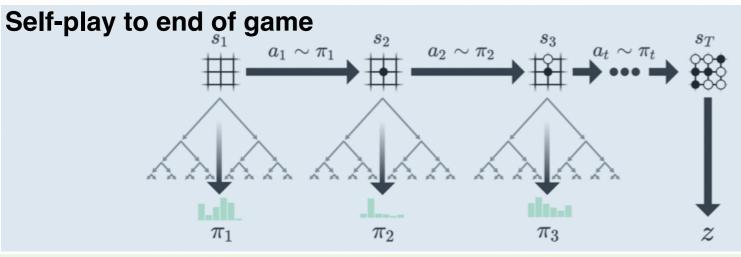
Improve thinking and intuition with feedback from self-play [zero human game data]



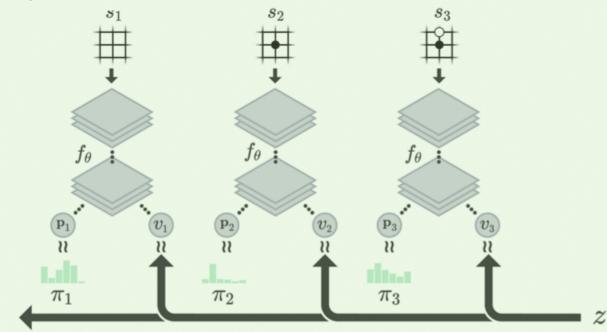
Mastering the game of Go without human knowledge, Silver et.al., Nature, Vol. 550, October 19, 2017

Very High Level Mechanics



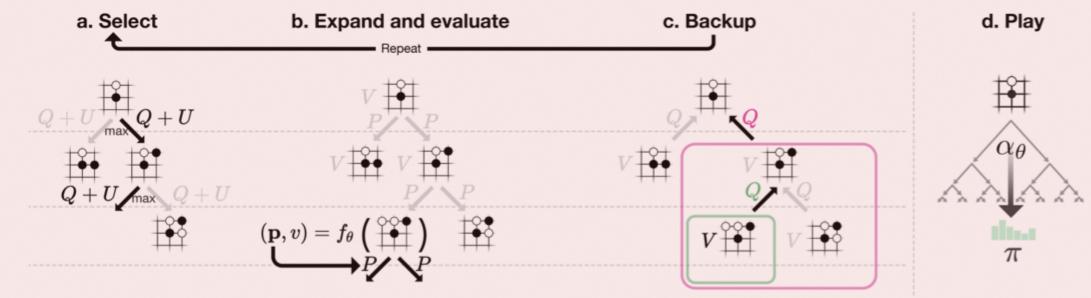


NN training: learn to evaluate

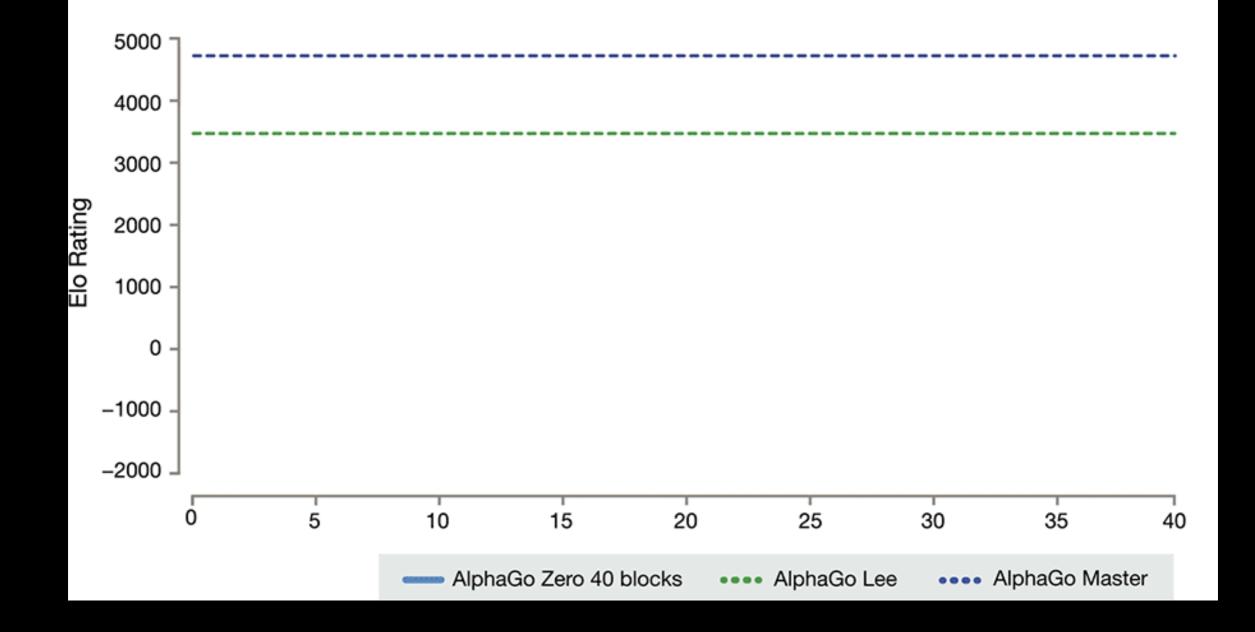


$$l = (z - v)^2 - \boldsymbol{\pi}^{\mathrm{T}} \log \boldsymbol{p} + c \|\boldsymbol{\theta}\|^2$$

Self-play step: select move by simulation + evaluation



Mastering the game of Go without human knowledge, Silver et.al., Nature, Vol. 550, October 19, 2017



https://deepmind.com/blog/alphago-zero-learning-scratch/

AlphaGo Zero Discovering new knowledge

https://deepmind.com/blog/alphago-zero-learning-scratch/ https://www.youtube.com/watch?v=WXHFqTvfFSw

Inspired to study RL much?

Next lecture: Building Blocks of (Deep) RL November 8, 2017

https://join.slack.com/t/deep-rl-tutorial/signup